Contemporary Mathematics in Context
A Unified Approach

from the Core-Plus Mathematics Project
There is a large and growing body of rigorous research documenting the effectiveness of the Core-Plus Mathematics Project curriculum. The results of some of that research are summarized in this brochure.

Quantitative Thinking
CPMP students outperform comparison students on the mathematics subtest of the nationally standardized Iowa Tests of Educational Development (ITED-Q).

Conceptual Understanding
CPMP students demonstrate better conceptual understanding than students in more traditional curricula.

Problem-Solving Ability
CPMP students demonstrate better problem-solving ability than comparison students.

Applications and Mathematical Modeling
CPMP students are better able to apply mathematics than students in more traditional curricula.

Algebraic Reasoning
CPMP students perform better on tasks of algebraic reasoning than comparison students.

Algebraic Procedural Skills
This is the one area for which field-test research indicates mixed results. On some evaluation tests, CPMP students do as well or better, on others they do less well than comparison students. As part of the curriculum development process, revisions have been made to strengthen students' algebraic skills. The final and published version of the Core-Plus Mathematics curriculum maintains the well-documented effectiveness of the curriculum, while strengthening students' algebraic procedural skills.

Important Mathematics in Addition to Algebra and Geometry
CPMP students perform well on mathematical tasks involving probability, statistics, and discrete mathematics.

National Assessment of Educational Progress (NAEP)
CPMP students scored well above national norms on a test comprised of released items from the National Assessment of Educational Progress.

Student Perceptions and Attitudes
CPMP students have better attitudes and perceptions about mathematics than students in more traditional curricula.

College Entrance Exams—SAT and ACT
CPMP students do as well as comparable students in more traditional curricula on the SAT and ACT college entrance exams.

Performance on College Math Placement Tests
On a mathematics department placement test from a large midwestern university, CPMP students performed as well as students in traditional precalculus on basic algebra and advanced algebra subtests, and they performed better on the calculus readiness subtest.

Performance in College Mathematics Courses
CPMP students completing the four-year curriculum perform as well as, or better than, comparable students in a more traditional curriculum in college mathematics courses at the calculus level and above.

*The Core-Plus Mathematics Project is supported, in part, by grants from the National Science Foundation (MDR-9255357, ESL-9618193). Opinions, findings, and conclusions expressed are those of the authors and not necessarily those of the Foundation. Co-directors of the Core-Plus Mathematics Project are Christian Hirsch (Western Michigan University), Arthur Cockroft (University of Michigan), James Fey (University of Maryland), and Harold Schoen (University of Iowa). Other principal curriculum developers are Gail Burrill (University of Wisconsin-Madison), Eric Hart (Western Michigan University), Brian Keller (Iowa State University), and Ann Watkins (California State University-Norridge). Evaluation coordinator is Steven Ziebarth (Western Michigan University).
Contemporary Mathematics in Context

is a four-year high school mathematics curriculum consisting of a three-year core program for all students, plus a fourth-year course continuing the preparation of students for college mathematics. The curriculum was developed by the Core-Plus Mathematics Project (CPMP) with funding from the National Science Foundation.*

Development and Evaluation of Contemporary Mathematics in Context

The content, organization, and design of Contemporary Mathematics in Context are based on the authors' interpretation of curriculum, teaching, and assessment recommendations in the NCTM Standards. The curriculum builds upon the theme of mathematics as sense-making. Through investigations of real-life contexts, students develop a rich understanding of important mathematics that make sense to them and, in turn, enables them to make sense of new situations and problems.

Each course in the curriculum features interwoven strands of algebra and functions, geometry and trigonometry, statistics and probability, and discrete mathematics. The curriculum emphasizes applications and mathematical modeling and capitalizes on the capabilities of graphing calculators.

The needed revisions identified by pilot teacher comments and test results were made promptly so that a revised, field-test version of a course was ready for use during the following school year.

This third year of development was the national field test, conducted in 36 high schools in Alaska, California, Colorado, Georgia, Idaho, Iowa, Kentucky, Michigan, Ohio, South Carolina, and Texas. A broad cross-section of students from urban, suburban, and rural communities with ethnic and cultural diversity was represented. Course 1 was field tested in ninth-grade classrooms in 1994-95, Course 2 in tenth-grade classrooms in 1995-96, Course 3 in eleventh-grade classrooms in 1996-97, and Course 4 in twelfth-grade classrooms in 1998-99.

Evaluation data and focus group meetings with field-test teachers were used by the authors to make further revisions in the materials before they were finally published for wide-scale use. Evaluation included a standardized mathematics achievement test, a test composed of released items from the National Assessment of Educational Progress (NAEP), a university mathematics department placement test, and a survey of students' and teachers' beliefs and attitudes about mathematics. Performance on ACT and SAT college admission tests was also monitored.
Student Achievement after Course 1 and Course 2 on Standardized Achievement Measures

One measure of mathematics achievement used in the CPMP field test is a nationally standardized test called Ability to Do Quantitative Thinking (ITED-Q), which is the mathematics subtest of the Iowa Tests of Educational Development. The ITED-Q is a 40-item multiple-choice test with the primary objective of measuring students’ ability to employ appropriate mathematical reasoning in situations requiring the interpretation of numerical data and charts or graphs that represent information related to business, social and political issues, medicine, and science. The ITED-Q correlates highly with other well-known measures of mathematical achievement such as the Iowa Test of Basic Skills Mathematics total score in grade eight (0.81), the ACT Mathematics Assessment (0.84), and the SAT Mathematics test (0.82).

The ITED-Q was administered to all CPMP Course 1 classes and to some non-CPMP control classes as a pretest in September 1994 and, in alternate equivalent forms, as a Course 1 posttest in May 1995 and as a Course 2 posttest in May 1996. Students in the CPMP classes were a heterogeneous mix of ninth-grade students. In fact, the distribution of CPMP pretest scores closely fits that of the nationally representative norm group of ninth-grade students at the beginning of the year. The control group was comprised of twenty algebra 1, five pre-algebra, three general mathematics, and two honors geometry ninth-grade classes.

In both Course 1 and Course 2, the posttest mean of the CPMP students was significantly greater than that of the control students. The table and accompanying box plots at the right show the pretest to posttest change of the CPMP and control groups relative to the test’s norm group. In the box plot of each distribution, the left and right endpoints correspond to the 5th and 95th percentiles respectively. The Course 1 results are based on all 2,944 CPMP students and 527 control group students who completed both the Course 1 pretest and the Course 1 posttest. The Course 2 results are based on all 2,270 CPMP students and 201 control group students who completed both the Course 1 pretest and the Course 2 posttest.
National Percentiles of CPMP and Control Students on the ITED-Q

<table>
<thead>
<tr>
<th></th>
<th>CPMP Students</th>
<th>Control Students</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Q1</td>
</tr>
<tr>
<td>Course 1 Pretest*</td>
<td>2944</td>
<td>27</td>
</tr>
<tr>
<td>Course 1 Posttest</td>
<td>2944</td>
<td>31</td>
</tr>
<tr>
<td>Course 1 Pretest</td>
<td>2270</td>
<td>34</td>
</tr>
<tr>
<td>Course 2 Posttest</td>
<td>2270</td>
<td>44</td>
</tr>
</tbody>
</table>

Q1 = first quartile; Md = median; Q3 = third quartile
* Reported pretest and posttest percentiles are, respectively, in the norming distributions of student scores at beginning of ninth grade and at end of ninth or end of tenth grade.

Box plots of CPMP and control groups' ITED-Q Course 1 pretest and Course 1 posttest distributions against national student percentile ranks

CPMP (N = 2944)

Course 1 Pretest

Course 1 Posttest

Control (N = 527)

Course 1 Pretest

Course 1 Posttest

Box plots of CPMP and control groups' ITED-Q Course 1 pretest and Course 2 posttest distributions against national student percentile ranks

CPMP (N = 2270)

Course 1 Pretest

Course 2 Posttest

Control (N = 201)

Course 1 Pretest

Course 2 Posttest
Student Achievement after Course 3

The National Assessment of Educational Progress (NAEP) is administered periodically as a means of monitoring U.S. students' achievement levels in various subject areas. As another measure of CPMP students' achievement, a 30-item test was constructed from released 1990 and 1992 Grade 12 NAEP items keeping some balance among the five content categories (numbers & operations; measurement; geometry; data, statistics & probability; and algebra & functions), the three process categories (concepts, problem solving, and procedures), and items for which a calculator was or was not required.

CPMP students outperformed the national sample in every content category as well as in every process category. These results show a pattern of strengths for CPMP students in areas of conceptual understanding and (especially in-context) problem solving as well as success with paper-and-pencil procedures and memory-based tasks. In addition, the NAEP-based test results illustrate CPMP students' greater proficiency with the graphing calculator and with statistics and probability compared to other content areas.

The NAEP-based test was administered in May, 1997 to CPMP students at the end of Course 3. A total of 1,292 students in 22 CPMP field-test schools completed this test. In presenting the results, we compare to the percent correct on subtests by students in the nationally representative sample of 8,499 twelfth-grade students who took the NAEP in Fall 1990 or 1992. Students in the NAEP sample reported that they had completed the following mathematics courses: Calculus (10%), Precalculus (19%), Advanced Algebra (61%), Geometry (76%), or Algebra (87%). Thus, the NAEP sample included some students who had not taken a mathematics course for more than a full year and others who had accelerated through four years of high school mathematics to AP Calculus, while all the CPMP students were just completing CPMP Course 3 and none were accelerated students.

The means of the CPMP students by item category are shown above along with the subtest means (across item means) of the NAEP sample.
SAT College Entrance Examination

SAT data for 1997 from 11 CPMP schools were separated into groups according to the secondary mathematics courses the students had completed. SAT Mathematics scores of students who had completed Courses 1, 2, and 3 were compared to SAT Mathematics scores of students who completed traditional algebra, geometry, and advanced algebra courses. The mean performance of each group is shown at the right. The CPMP Course 3 mean is greater than that of the advanced algebra students, but the difference is not significant at the 0.05 level.

Information on the SAT performance of CPMP students in individual schools can be found in a booklet entitled Student Achievement Reports, Volume 1, available from Everyday Learning.
ACT College Entrance Examination

The 2,944 CPMP students and 527 control group students in the original CPMP field-test sample had nearly identical mean scores on the ITED-Q pretest administered at the beginning of Grade 9. ACT scores were available from a reasonably large subset of these students. Comparisons of the ACT Mathematics, ACT Science Reasoning, and ACT Composite scores of the CPMP students and the control students who completed more traditional programs are reported below. The group means on the ACT Mathematics, Science Reasoning, and Composite are not significantly different. The CPMP students had a slightly better ACT Composite score. They did somewhat better on the Science Reasoning subtest and not quite as well on the Mathematics subtest.

The ACT Mathematics subtest closely matches the first three years of a traditional college preparatory mathematics program and emphasizes topics from elementary algebra, advanced algebra, plane geometry, coordinate geometry, and trigonometry. The test includes virtually no content from two of the four CPMP strands, statistics and probability and discrete mathematics.

The ACT Science Reasoning subtest provides a better measure than the Mathematics subtest of some of the reasoning and problem-solving goals of CPMP. In spite of the word "Science" in its title, this subtest does not assess standard high school science content but rather requires students to retrieve information from graphs and tables, draw conclusions and predict results based on summaries of described experiments, and compare opposing interpretations about given data. These are all activities in which CPMP students frequently engage.

Thus, the somewhat higher means of CPMP students relative to comparable students in traditional curricula on ACT Science Reasoning and the reverse on ACT Mathematics are related to the degree of match between curriculum goals and subtest goals. Reports of ACT performance of students in individual schools are available in Student Achievement Reports, Volume 1, available from Everyday Learning.

![ACT Performance of CPMP Students and Control Students](image-url)
University Mathematics Department Placement Examinations

At most large universities, the mathematics department administers a mathematics placement examination. A mathematics placement test that is presently used at one major university was administered to students in several field-test schools in May 1999 at the end of CPMP Course 4 and at the end of traditional Precalculus. This placement test, compiled from a bank of items developed by the Mathematical Association of America, is used to make recommendations to entering freshmen concerning the college mathematics course that would be best for them. This test contains three subtests — Basic Algebra (15 items), Advanced Algebra (15 items), and Calculus Readiness (20 items). The first two subtests consist almost entirely of algebraic symbol manipulation tasks, and the third subtest measures some of the important concepts that underlie calculus. A graphing calculator (that does not do symbol manipulation) is allowed on this test.

The CPMP Course 4 students included in the comparison below are all those in the 1998-99 Course 4 field test who completed the six “preparation for calculus” units of Course 4 as the last course in their sequence of CPMP Courses 1-4 (N = 164). The Precalculus students, also from field-test schools, just completed a traditional precalculus course to end a sequence of Algebra, Geometry, and Advanced Algebra (N = 177). The two groups were further restricted to those students who indicated on a written survey their intention to attend a four-year college or university in the next school year. Eighth-grade mathematics standardized test scores for both groups were, on average, at about the 85th national percentile. Means by group and subtest are shown at the left. The CPMP Course 4 mean was significantly higher than the Precalculus mean on the Calculus Readiness subtest, while the group means did not differ significantly on the Basic Algebra or Advanced Algebra subtests.

The mathematics department at the university that provided this placement test combines the subtest scores by a formula to recommend enrollment for each student in one of four college mathematics courses — Calculus I, Precalculus, Intermediate Algebra, and Beginning Algebra. Using this formula, the percent of CPMP Course 4 and Precalculus students who would be recommended for each course is shown at the left. A much higher percent of CPMP Course 4 students (50.6%) than traditional Precalculus students (39.0%) would be recommended for Calculus I suggesting that CPMP Course 4 better prepares students for this examination and presumably for college calculus.
Performance in College Mathematics Courses

The first students who experienced the entire four courses of CPMP in the field-test version entered college in Fall 1999. Some preliminary evidence on how CPMP graduates who experienced the CPMP curriculum in its pilot version perform in collegiate mathematics courses is now available. Freshman mathematics course grade data for each year from 1995-96 through 1998-99 were gathered for all graduates of two similar high schools in the same midwestern, suburban school district who enrolled in the same major midwestern university.

For purposes of this report, the pseudonyms Midwestern University, East High School, and West High School will be used. The 1995 and 1996 graduates of both high schools completed a traditional high school college-preparatory mathematics curriculum with offerings through AP Calculus. The traditional program continued at West High School. At East High School, all 1997 graduates who were not in an accelerated mathematics program and all 1998 graduates completed a CPMP pilot curriculum. Accelerated students among 1998 East High School graduates took AP Calculus as seniors after completing CPMP Courses 1-4 in previous years.

Located in a suburb with many affluent, well-educated residents, East and West High School buildings (enrollments 842 and 1,070, respectively) are just two miles apart and are demographically similar. Many adults in the community are professionals in upper management positions. Over 80% of the students are white with Asian Americans comprising the largest of several minority groups. Less than 10 students in each school are eligible for the free lunch program.

Freshman college mathematics course grades of graduates of these two schools who matriculated at Midwestern University were analyzed using computer data files with school names, but no student names, attached. Thus, the form of the data precludes any connecting of data to individual students, but allows for the following analysis of four-year school trends in college mathematics course-taking and grades.

Course Elections

Pertinent mathematics courses at Midwestern University are Precalculus, Calculus I, Calculus II, Calculus III, Introduction to Differential Equations, and Honors (all honors math courses open to freshmen). Precalculus is the lowest level mathematics course offered. Typically, freshmen enrolled in precalculus have completed three to four years of college-preparatory high school mathematics but not AP Calculus. Freshmen enrolled in Calculus I in fall semester have usually completed at least four years of high school mathematics through precalculus or CPMP Course 4, and some may have taken a high school AP Calculus course. Spring-semester Calculus I classes would also include some students who successfully completed the Precalculus course in the previous fall semester. Freshmen in Calculus II or Calculus III would be placed there mainly because of high AP Calculus Examination scores or success in the preceding college calculus course in fall semester. Freshmen with exceptionally strong high school mathematics backgrounds and AP Calculus Examination scores may take Calculus III in fall semester and Differential Equations in spring semester.

Enrollments and Grades

The table at the right shows the number of matriculants at Midwestern University among the 1995, 1996, 1997, and 1998 graduates of East and West High Schools, the numbers of these graduates completing each mathematics course in their freshman year, together with grade point averages, mathematics course enrollments, and the course averages by school in each year. The grade point averages were calculated using the Midwestern University system as follows: A+ (4.3), A (4), A- (3.7), B+ (3.3), B (3), ..., D (1), D- (0.7), E+ (0.3), and E (0).
Performance of CPMP and non-CPMP Students in College Mathematics Courses at One Midwestern University

<table>
<thead>
<tr>
<th>College Class</th>
<th>East High School (CPMP in ’97 & ’98)</th>
<th>West High School (Traditional)</th>
</tr>
</thead>
<tbody>
<tr>
<td># matriculants</td>
<td>50</td>
<td>74</td>
</tr>
<tr>
<td>Precalculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td># students</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>GPA</td>
<td>3.18</td>
<td>2.29</td>
</tr>
<tr>
<td>Calculus I</td>
<td></td>
<td></td>
</tr>
<tr>
<td># students</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>GPA</td>
<td>2.86</td>
<td>2.60</td>
</tr>
<tr>
<td>Calculus II</td>
<td></td>
<td></td>
</tr>
<tr>
<td># students</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>GPA</td>
<td>2.67</td>
<td>3.33</td>
</tr>
<tr>
<td>Calculus III</td>
<td></td>
<td></td>
</tr>
<tr>
<td># students</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>GPA</td>
<td>2.66</td>
<td>3.10</td>
</tr>
<tr>
<td>Introduction to Differential Equations</td>
<td></td>
<td></td>
</tr>
<tr>
<td># students</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>GPA</td>
<td>2.15</td>
<td>4.00</td>
</tr>
<tr>
<td>Honors</td>
<td></td>
<td></td>
</tr>
<tr>
<td># students</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>GPA</td>
<td>3.28</td>
<td></td>
</tr>
<tr>
<td>All Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td># students</td>
<td>39</td>
<td>47</td>
</tr>
<tr>
<td>GPA</td>
<td>2.76</td>
<td>2.69</td>
</tr>
</tbody>
</table>
Performance in College Mathematics Courses (Continued)

University mathematics course grades of East High School graduates for 1997 and 1998 when a CPMP pilot curriculum was in place are higher, on average, than both pre-CPMP (that is, 1995 and 1996) East graduates and 1997 and 1998 West High School graduates. This preliminary school-trend evidence suggests that students who experienced a pilot CPMP curriculum were at least as well-prepared for calculus (AP or college level) as students in more traditional curricula.
A written, Likert-type survey of students' perceptions and attitudes about various aspects of their mathematics course was administered at the end of each school year. Data from this Student Belief Survey indicate that CPMP students grew significantly in confidence about their mathematical ability and in their interest both in mathematics and in studying more mathematics.

Following are some of the specific findings mainly from CPMP students at the end of Course 2 as compared to traditional geometry students at the end of the same year. (Course 2 results are presented since the newness effect of the CPMP approach is likely to have disappeared by then). Each of the following findings was consistent across levels of student achievement.

- CPMP students (79.2%) agreed that cooperative group work helped them learn mathematics. The advantages of learning in groups most often cited by students were seeing how other people attack problems and the support of group members during problem-solving efforts.

- A significantly higher percent of CPMP students than of traditional students agreed that their mathematics course contained realistic problems, made the mathematical ideas interesting, and increased their ability to talk about and to write about mathematics. CPMP students' levels of agreement to survey items in these areas range from 66.5% to 76.5%.

- CPMP students were much more likely than geometry students to want to take a mathematics course taught in the same way the next year (75% compared to 43% agreement), and 27% of CPMP students at the end of Course 3 agreed that it was mainly because of CPMP that they took a third year of mathematics.

These findings coupled with substantial increases in enrollments in junior and senior mathematics courses in many field test schools provide strong evidence that the CPMP curriculum is a factor in keeping more students in mathematics courses longer.

What Do Students Say about CPMP?

Interviews and journal reports of students indicate that they think the CPMP curriculum is challenging, yet useful, interesting, and enjoyable. Some representative student comments follow.

"My experience in math class this year was more like the real outside world. It wasn't just numbered problems that you had to work out in so many steps. This was actually the situations and problems that needed thinking and common sense. I left with a higher knowledge of math instead of a lot of numbered problems in my head."

"This class is fun, exciting, creative and makes people use their mind and common sense to solve problems that you might face in real life situations. Not those boring classes where you learn how to do a problem and remember the formula. This class is also hard work, but you learn a lot as you're working."

Continued on next page
What Do Students Say about CPMP? (Continued)

"We work with calculators to solve real life problems that people experience. This makes the work so much more interesting. We don’t just solve boring equations that most people will never use again after we graduate from high school or college. We work on normal problems like figuring out profits of business."

"The material [Exponential Models] was real and you could imagine the problems as you did them. That made the problems easier for me. It was done in such a way so that I could investigate my way through a problem. This is a better way for me to learn than to be lectured at and then expected to understand."

"It is my firm belief that my Core-Plus education in fact better prepared me for the mathematics I encountered in college, as well as for the preceding Advanced Placement Examination, than would have a traditional mathematics program. For any student who intends to study math at the level of single-variable calculus or beyond, I believe that the conceptual-based style of education stressed in the Core-Plus program will prove far more beneficial than the memorization of what would otherwise be meaningless formulas and algorithms."

"The real-life examples of Core-Plus mathematics gave me an excellent background for demanding engineering courses. Because of my Core-Plus background, I feel I am two steps ahead of students who did not take Core-Plus math in high school."

What Do Teachers Say About CPMP?

Teachers, too, have found many rewards and challenges in their experiences with the CPMP curriculum.

"In the traditional math class, I often found myself asking 'why is this important?' It's no wonder why kids consistently asked 'when am I ever going to use this?...' they (the students) are beginning to understand that mathematics is not some routine, memorized, hard-to-understand subject, but rather a process which makes sense and applies to the world around them."

"CPMP [Course 2] is awesome. I've never taught a class where more mathematics is going on. Students are understanding concepts rather than just doing problems. Students are asking mathematical questions. I've taught 16 years and I'll never teach in a traditional class again."

"I have found with the investigations, the math concepts stay with the students longer. I spend little time reviewing for tests or quizzes."

"When students see a real purpose for the mathematics they are learning, it makes more sense and is easier for them, [since] every math concept is developed through investigating real world experience. Students begin to see math in every part of their lives and that math patterns are universal."

"The contexts such as the 'whale tale' seem to provide students with a hook on which to place concepts. This allows students to retrieve the mathematics at a much later time."

"I believe that the use of mathematical models to help students understand mathematics (make sense of mathematics) gives purpose and motivation to students. Students recall NOW-NEXT as 'population growth,' powers of matrices as 'tennis tournament,' graph models as 'map coloring,' etc. The real-world model sets the stage for the mathematics, and because of this, more students see the reason for learning the mathematics."

"I have found that students will remember topics in terms of the 'big problem' and then recreate the steps from memory as they encounter a similar problem a year later."

"I think the CPMP has really empowered my students. They are much more competent in their mathematical reasoning ability than traditional [students]."

"CPMP has changed the way students view mathematics. Instead of being a static body of knowledge and methods to be learned and memorized, mathematics is now a way of thinking about problems and their solutions."

"The content of CPMP is much fuller and contains some content I had never had myself. The CPMP curriculum throughout is much more challenging than I first expected and certainly more so than traditional."

"They have developed the ability to think, work in groups, learn more useful math than the students who took the traditional track. More students took a 4th year of math than the traditional students."

"Our experience has been very positive with respect to the success of students in AP Calculus."
More than five years of evidence from classroom observations, teacher and student comments, and achievement and attitude measures collected in a diverse set of over 30 schools across the country support the conclusion that the CPMP curriculum is creating new windows of opportunity for all students. CPMP students showed consistently strong growth in mathematical achievement across the distribution of students' test scores. Furthermore, evidence from college entrance examinations, university mathematics placement tests, and university mathematics course grades indicates that the CPMP curriculum provides a mathematical preparation for college-bound students that is at least as strong as that of more traditional high school curricula.

Based on it's overall quality and the evaluation evidence presented here, the CPMP curriculum, *Contemporary Mathematics in Context*, was cited by the U.S. Department of Education as an "exemplary program."
Based on its overall quality and the evaluation evidence presented here, the CPMP curriculum, \textit{Contemporary Mathematics in Context}, was cited by the U.S. Department of Education as an "exemplary program."

To find out more about \textit{Contemporary Mathematics in Context}, contact

\textsc{Everyday Learning Corporation}
\textit{A Tribune Education Company}
P.O. Box 812960, Chicago, IL 60681
1-800-322-MATH 1-800-382-7670
FAX 1-312-540-5848
www.everydaylearning.com

Item No. 9954